15 research outputs found

    Salmonella enterica ssp. arizonae infection in a 43-year-old Italian man with hypoglobulinemia: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Salmonella enterica </it>ssp. <it>arizonae </it>is an uncommon human pathogen with serious infections reported in immunocompromised hosts. In Europe, only a few cases have been described. Patients with this infection usually have a history of contact with reptiles or travel abroad. We present a case report of infection in a patient with hypoglobulinemia and a literature review.</p> <p>Case presentation</p> <p>We describe the case of a 43-year-old Caucasian Italian man with hypoglobulinemia who presented to our hospital with sepsis and diarrhea. A stool culture yielded <it>S. enterica </it>ssp. <it>arizonae</it>. Our patient was treated with oral ciprofloxacin and made a full recovery. We also present a review of the cases of <it>S. enterica </it>ssp. <it>arizonae </it>infections previously reported in Europe.</p> <p>Conclusions</p> <p>The majority of infections from <it>S. enterica </it>ssp. <it>arizonae </it>occur in patients who are immunocompromised. Data from the literature suggests that it may be difficult to eradicate the bacteria and thus, prolonged antibiotic courses are often used. It would be advisable for clinicians to investigate for pre-existing immune dysfunction if <it>S. enterica </it>ssp. <it>arizonae </it>is isolated. In Italy, although there have only been a few cases, the likely route of transmission remains unclear and requires further surveillance.</p

    Computerized clinical decision support systems for acute care management: A decision-maker-researcher partnership systematic review of effects on process of care and patient outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute medical care often demands timely, accurate decisions in complex situations. Computerized clinical decision support systems (CCDSSs) have many features that could help. However, as for any medical intervention, claims that CCDSSs improve care processes and patient outcomes need to be rigorously assessed. The objective of this review was to systematically review the effects of CCDSSs on process of care and patient outcomes for acute medical care.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. MEDLINE, EMBASE, Evidence-Based Medicine Reviews databases (Cochrane Database of Systematic Reviews, DARE, ACP Journal Club, and others), and the Inspec bibliographic database were searched to January 2010, in all languages, for randomized controlled trials (RCTs) of CCDSSs in all clinical areas. We included RCTs that evaluated the effect on process of care or patient outcomes of a CCDSS used for acute medical care compared with care provided without a CCDSS. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Thirty-six studies met our inclusion criteria for acute medical care. The CCDSS improved process of care in 63% (22/35) of studies, including 64% (9/14) of medication dosing assistants, 82% (9/11) of management assistants using alerts/reminders, 38% (3/8) of management assistants using guidelines/algorithms, and 67% (2/3) of diagnostic assistants. Twenty studies evaluated patient outcomes, of which three (15%) reported improvements, all of which were medication dosing assistants.</p> <p>Conclusion</p> <p>The majority of CCDSSs demonstrated improvements in process of care, but patient outcomes were less likely to be evaluated and far less likely to show positive results.</p

    Strategies to reduce medication errors with reference to older adults

    Get PDF
    Background  In Australia, around 59% of the general population uses prescription medication with this number increasing to about 86% in those aged 65 and over and 83% of the population over 85 using two or more medications simultaneously. A recent report suggests that between 2% and 3% of all hospital admissions in Australia may be medication related with older Australians at higher risk because of higher levels of medicine intake and increased likelihood of being admitted to hospital. The most common medication errors encountered in hospitals in Australia are prescription/medication ordering errors, dispensing, administration and medication recording errors. Contributing factors to these errors have largely not been reported in the hospital environment. In the community, inappropriate drugs, prescribing errors, administration errors, and inappropriate dose errors are most common. Objectives  To present the best available evidence for strategies to prevent or reduce the incidence of medication errors associated with the prescribing, dispensing and administration of medicines in the older persons in the acute, subacute and residential care settings, with specific attention to persons aged 65 years and over. Search strategy  Bibliographic databases PubMed, Embase, Current contents, The Cochrane Library and others were searched from 1986 to present along with existing health technology websites. The reference lists of included studies and reviews were searched for any additional literature. Selection criteria  Systematic reviews, randomised controlled trials and other research methods such as non-randomised controlled trials, longitudinal studies, cohort or case-control studies, or descriptive studies that evaluate strategies to identify and manage medication incidents. Those people who are involved in the prescribing, dispensing or administering of medication to the older persons (aged 65 years and older) in the acute, subacute or residential care settings were included. Where these studies were limited, evidence available on the general patient population was used. Data collection and analysis  Study design and quality were tabulated and relative risks, odds ratios, mean differences and associated 95% confidence intervals were calculated from individual comparative studies containing count data where possible. All other data were presented in a narrative summary. Results  Strategies that have some evidence for reducing medication incidents are: •  computerised physician ordering entry systems combined with clinical decision support systems; •  individual medication supply systems when compared with other dispensing systems such as ward stock approaches; •  use of clinical pharmacists in the inpatient setting; •  checking of medication orders by two nurses before dispensing medication; •  a Medication Administration Review and Safety committee; and •  providing bedside glucose monitors and educating nurses on importance of timely insulin administration. In general, the evidence for the effectiveness of intervention strategies to reduce the incidence of medication errors is weak and high-quality controlled trials are needed in all areas of medication prescription and delivery

    Do computerised clinical decision support systems for prescribing change practice? A systematic review of the literature (1990-2007)

    Get PDF
    Computerised clinical decision support systems (CDSSs) are used widely to improve quality of care and patient outcomes. This systematic review evaluated the impact of CDSSs in targeting specific aspects of prescribing, namely initiating, monitoring and stopping therapy. We also examined the influence of clinical setting (institutional vs ambulatory care), system- or user-initiation of CDSS, multi-faceted vs stand alone CDSS interventions and clinical target on practice changes in line with the intent of the CDSS. We searched Medline, Embase and PsychINFO for publications from 1990-2007 detailing CDSS prescribing interventions. Pairs of independent reviewers extracted the key features and prescribing outcomes of methodologically adequate studies (experiments and strong quasi-experiments). 56 studies met our inclusion criteria, 38 addressing initiating, 23 monitoring and three stopping therapy. At the time of initiating therapy, CDSSs appear to be somewhat more effective after, rather than before, drug selection has occurred (7/12 versus 12/26 studies reporting statistically significant improvements in favour of CDSSs on = 50% of prescribing outcomes reported). CDSSs also appeared to be effective for monitoring therapy, particularly using laboratory test reminders (4/7 studies reporting significant improvements in favour of CDSSs on the majority of prescribing outcomes). None of the studies addressing stopping therapy demonstrated impacts in favour of CDSSs over comparators. The most consistently effective approaches used system-initiated advice to fine-tune existing therapy by making recommendations to improve patient safety, adjust the dose, duration or form of prescribed drugs or increase the laboratory testing rates for patients on long-term therapy. CDSSs appeared to perform better in institutional compared to ambulatory settings and when decision support was initiated automatically by the system as opposed to user initiation. CDSSs implemented with other strategies such as education were no more successful in improving prescribing than stand alone interventions. Cardiovascular disease was the most studied clinical target but few studies demonstrated significant improvements on the majority of prescribing outcomes. Our understanding of CDSS impacts on specific aspects of the prescribing process remains relatively limited. Future implementation should build on effective approaches including the use of system-initiated advice to address safety issues and improve the monitoring of therapy

    Computerized clinical decision support systems for therapeutic drug monitoring and dosing: A decision-maker-researcher partnership systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some drugs have a narrow therapeutic range and require monitoring and dose adjustments to optimize their efficacy and safety. Computerized clinical decision support systems (CCDSSs) may improve the net benefit of these drugs. The objective of this review was to determine if CCDSSs improve processes of care or patient outcomes for therapeutic drug monitoring and dosing.</p> <p>Methods</p> <p>We conducted a decision-maker-researcher partnership systematic review. Studies from our previous review were included, and new studies were sought until January 2010 in MEDLINE, EMBASE, Evidence-Based Medicine Reviews, and Inspec databases. Randomized controlled trials assessing the effect of a CCDSS on process of care or patient outcomes were selected by pairs of independent reviewers. A study was considered to have a positive effect (<it>i.e.</it>, CCDSS showed improvement) if at least 50% of the relevant study outcomes were statistically significantly positive.</p> <p>Results</p> <p>Thirty-three randomized controlled trials were identified, assessing the effect of a CCDSS on management of vitamin K antagonists (14), insulin (6), theophylline/aminophylline (4), aminoglycosides (3), digoxin (2), lidocaine (1), or as part of a multifaceted approach (3). Cluster randomization was rarely used (18%) and CCDSSs were usually stand-alone systems (76%) primarily used by physicians (85%). Overall, 18 of 30 studies (60%) showed an improvement in the process of care and 4 of 19 (21%) an improvement in patient outcomes. All evaluable studies assessing insulin dosing for glycaemic control showed an improvement. In meta-analysis, CCDSSs for vitamin K antagonist dosing significantly improved time in therapeutic range.</p> <p>Conclusions</p> <p>CCDSSs have potential for improving process of care for therapeutic drug monitoring and dosing, specifically insulin and vitamin K antagonist dosing. However, studies were small and generally of modest quality, and effects on patient outcomes were uncertain, with no convincing benefit in the largest studies. At present, no firm recommendation for specific systems can be given. More potent CCDSSs need to be developed and should be evaluated by independent researchers using cluster randomization and primarily assess patient outcomes related to drug efficacy and safety.</p
    corecore